NRM 85 Course Outline as of Spring 2002

CATALOG INFORMATION

Dept and Nbr: NRM 85 Title: FOR HYDROL & WTRSHD MGMT

Full Title: Forest Hydrology and Watershed Management

Last Reviewed: 2/14/2011

Units		Course Hours per Weel	4	Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	4.00	Lab Scheduled	2.00	17	Lab Scheduled	35.00
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00 Total Student Learning Hours: 192.50

Title 5 Category: AA Degree Applicable

Grading: Grade or P/NP

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

This course serves as an introduction to forest and wildland hydrology, and the management of resources on a watershed scale. The material covered will include the fundamental concepts of the hydrologic cycle: precipitation, interception, evaporation, evapotranspiration and runoff, infiltration, and groundwater. The fundamentals of protection, management, and monitoring watersheds in California will be emphasized.

Prerequisites/Corequisites:

Recommended Preparation:

Eligibility for ENGL 100 or ESL 100

Limits on Enrollment:

Schedule of Classes Information:

Description: This course serves as an introduction to forest and wildland hydrology, and the management of resources on a watershed scale. The material covered will include the fundamental concepts of the hydrologic cycle: precipitation, interception, evaporation, evapotranspiration and runoff, infiltration, and groundwater. The fundamentals of protection,

management, and monitoring watersheds in California will be emphasized. (Grade or P/NP)

Prerequisites/Corequisites:

Recommended: Eligibility for ENGL 100 or ESL 100

Limits on Enrollment: Transfer Credit: CSU;

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Fall 1999 Inactive: Fall 2019

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Outcomes and Objectives:

The student will:

- 1. Define the hydrologic cycle and explain the various processes of the cycle.
- 2. Construct a stream hydrograph and analyze its various components.
- 3. Inventory and appraise various watershed characteristics such as: area, drainage density, relief ratio, circularity ratio, stream order, etc.
- 4. Calculate the average precipitation of a drainage basin using various approaches including: Theissen polygon method, Isohyetal method, and arithmetic average method.
- 5. Recognize and demonstrate runoff and infiltration principles and processes.
- 6. Describe the effects of various resource management practices on water yield.
- 7. Recognize and discuss important water issues in California.

Topics and Scope:

- I. Introduction to Water Resources in California.
 - a. History of water development.
 - b. Regional basis of supply and demand for water.
 - c. Conflicts among the different user groups.
 - d. State, federal and local water projects in California.
- II. The Hydrologic Cycle, Water and Energy Budgets.
 - a. Physical processes, storage and transport of water.

- b. Water: physical properties, molecular structure and phases.
- c. Energy exchange and effect on hydrologic functioning.

III. Atmospheric Precipitation.

- a. Types of precipitation: rain, snow, fog.
- b. Measurement: annual amounts, intensity and seasonal variation.
- c. Geographic and topographic variation of precipitation.
- d. Basin precipitation: measurement and analysis.
- IV. Canopy Interception and Redistribution of Water.
 - a. Vegetation canopy characteristics and water storage capacity.
 - b. Canopy throughfall and stemflow.
 - c. Litter interception and potential infiltration.
 - d. Evapotranspiration of water.
- V. Infiltration and Runoff.
 - a. Soil characteristics, vegetation disturbance and effect on infiltration rates.
 - b. Surface and subsurface flow of water.
 - c. Measurement of water yield, and stream hydrograph construction and analysis.
- VI. Measurement of Watershed Characteristics.
 - a. Basin area, aspect and topographic relief.
 - b. Stream order, drainage density, and total length of perennial and intermittent streams.
 - c. Streamflow, discharge rates, erosion and sedimentation.
- VII. Resource Management Activities and Effect on Water Quality and Quantity.
 - a. Timber harvesting and log road construction.
 - b. Range management and grazing influences.
 - c. Wildland fire and cumulative management effects.
- VIII. Other Aspects of Watershed Management.
 - a. Flooding and flood control structures.
 - b. Snow hydrology.
 - c. Watershed restoration and rehabilitation.

Assignment:

- 1. Reading assignments from the text.
- 2. Five field lab reports during the semester.
- 3. Skill demonstration of use of field equipment.
- 4. Construction of a river hydrograph.
- 5. Design of drainage structures from information gathered in the field.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments and skill demonstrations are more appropriate for this course.

Writing 0 - 0%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems, Field work, Lab reports, Exams

Problem solving 30 - 50%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Class performances, Field work, Performance exams

Skill Demonstrations 40 - 60%

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, True/false, Matching items, Completion

Exams 10 - 25%

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Other Category 0 - 0%

Representative Textbooks and Materials:

WATERSHED HYDROLOGY, by Peter Black, Ann Arbor Press, 2nd Edition, 1997.