BREW 120 Course Outline as of Fall 2022

CATALOG INFORMATION

Dept and Nbr: BREW 120 Title: BREW OPS AND TECH

Full Title: Brewery Operations and Technology

Last Reviewed: 5/23/2016

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	8	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade or P/NP

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Brewery equipment requirements and operation. Brewery design and its impact on operation, sustainability, sanitation, and final product.

Prerequisites/Corequisites:

Course Completion of BREW 100 and BREW 112;

AND Concurrent Enrollment in BREW 122

Recommended Preparation:

Eligibility for ENGL 100 or ESL 100

Limits on Enrollment:

Must be age 18 or older

Schedule of Classes Information:

Description: Brewery equipment requirements and operation. Brewery design and its impact on

operation, sustainability, sanitation, and final product. (Grade or P/NP)

Prerequisites/Corequisites: Course Completion of BREW 100 and BREW 112;

AND Concurrent Enrollment in BREW 122

Recommended: Eligibility for ENGL 100 or ESL 100

Limits on Enrollment: Must be age 18 or older

Transfer Credit:

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Effective: Inactive:

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Certificate Applicable Course

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

1. Students will be able to:

Apply knowledge of brewery systems and equipment to produce beer on a commercial scale.

Objectives:

Upon completion of this course, students will be able to:

- 1. Identify different production zones of a brewery and the requirements of each area.
- 2. Describe basic principles of fluid dynamics, heat transfer, and carbonation of liquids and how they relate to beer production.
- 3. Describe various food contact surface and work surface (floor and wall) options and how they impact sanitation practices.
- 4. Describe proper cleaning agents and techniques to maintain a sanitary environment for food production, and perform safe handling procedures when using these chemicals.
- 5. Describe equipment used for brewing beer.
- 6. Solve problems related to beer production.
- 7. Evaluate different packaging options for beer and their impact on quality and cost of goods.
- 8. Describe how sustainability can be applied to brewery waste streams.

Topics and Scope:

- I. Brewery Design
 - A. Product flow
 - B. Production zones and special requirements
 - C. Mechanical systems
 - D. Processing equipment
 - E. Work surfaces
- II. Food Engineering
 - A. Fluid dynamics
 - B. Heat transfer
 - C. Carbonation of liquids

- D. Food contact surfaces
- III. Sanitation
 - A. The role of water
 - B. Sanitation agents and techniques
 - C. Sterilization
- IV. Brewery equipment
 - A. Grain mill
 - B. Mash tun
 - C. Lauter
 - D. Kettle
 - E. Hot liquor tank
 - F. Heat exchanger
 - G. Fermentation tanks
 - H. Filters
 - I. Brite beer tanks
 - J. Pumps
 - K. Packaging equipment
- V. Waste streams and sustainability
 - A. Wash water
 - B. Spent grain
 - C. Carbon dioxide
 - D Tank solids

Assignment:

- 1. Reading in required text, 20 40 pages per week
- 2. Design a microbrewery incuding space for production, storage, lab, and administraion
- 3. Create a manual of standard operation procedures for sanitation in a small brewery
- 4. Create flowchart of the brewing process with special requirements of each step
- 5. Research and report on creative ways to recover value and reduce volume of brewery waste streams (5-10 pages)
- 6. Problem solving simulation exercises
- 7. Midterm and final exam

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Report; manual of standard operation

Writing 20 - 40%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Microbrewery design; flowchart; simulation exercises

Problem solving 20 - 40%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Microbrewery design

Skill Demonstrations 10 - 20%

Exams: All forms of formal testing, other than skill performance exams.

Midterm and final exam: multiple choice, true and false, completion

Exams 20 - 40%

Other: Includes any assessment tools that do not logically fit into the above categories.

Participation

Other Category 0 - 15%

Representative Textbooks and Materials:

Beer: Tap Into the Art and Science of Brewing. Bamforth, Charles. Oxford University Press, 2009. (Classic)

Instructor prepared materials