APED 368 Course Outline as of Spring 2020

CATALOG INFORMATION

Dept and Nbr: APED 368 Title: APP PLUMBERS, HVAC, 9TH Full Title: Apprentice Plumbers, HVAC/Refrigeration, Ninth Semester

Last Reviewed: 5/14/2018

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.00	18	Lecture Scheduled	54.00
Minimum	4.00	Lab Scheduled	3.00	8	Lab Scheduled	54.00
		Contact DHR	0		Contact DHR	0
		Contact Total	6.00		Contact Total	108.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 108.00 Total Student Learning Hours: 216.00

Title 5 Category: AA Degree Non-Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Related supplemental instruction of heating, ventilation, air conditioning, and refrigeration for apprentice plumbers and pipefitters.

Prerequisites/Corequisites:

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Related supplemental instruction of heating, ventilation, air conditioning, and

refrigeration for apprentice plumbers and pipefitters. (Grade Only)

Prerequisites/Corequisites:

Recommended:

Limits on Enrollment:

Transfer Credit:

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Effective: Inactive:

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Certificate Applicable Course

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Describe and demonstrate electrical/ plumbing principles and regulations related to heating, ventilation, air conditioning, and refrigeration trade.
- 2. Apply best practices in practical environment related to heating, ventilation, air conditioning, and refrigeration trade.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Explain, demonstrate, and analyze physical properties of water and steam in industrial applications.
- 2. Explain, demonstrate, and analyze properties of hydraulic and pneumatic systems in industrial applications.
- 3. Explain, demonstrate, analyze and utilize theories and characteristics of metals, alloys, and synthetics in industrial applications.
- 4. Define, demonstrate, analyze, and apply thermodynamic terms, definitions, and formulas to industry-related practices and processes.
- 5. Define, demonstrate, analyze, and apply psychrometric terms, definitions, and formulas to industry-related practices and processes.

Topics and Scope:

- I. Water and Steam
 - A. Physical properties of water in industrial applications
 - B. Physical properties of steam in industrial applications
 - C. Flows and characteristics of water in machinery
 - D. Flows and characteristics of steam in machinery
- II. Hydraulic and pneumatic systems
 - A. Hydraulic systems
 - B. Pneumatic systems
 - C. Testing of hydraulic systems
 - D. Testing of pneumatic systems
- III. Metals, alloys, and synthetics

- A. Industrial materials: metals, alloys, and synthetics
- B. Corrosion by water and steam on industrial materials
- IV. Thermodynamics in industrial applications
 - A. Thermodynamic terms and symbols
 - B. Thermodynamic formulas and equations
 - C. Thermodynamic terms, symbols, and formulas in industrial applications
- V. Psychrometrics in industrial applications
 - A. Psychrometric terms and symbols
 - B. Psychrometric formulas, equations, and tables
 - C. Psychrometric terms, symbols, and formulas in industrial applications

All topics are covered in the lecture and lab portions of the course.

Assignment:

Lecture-Related Assignments:

- 1. Written homework assignments (1 to 2 sets per week)
- 2. Project homework assignments (1 to 2 sets per week)
- 3. Weekly reading 10-15 pages
- 4. Quizzes and examinations (4 to 6 per semester)

Lab-Related Assignment:

5. Class performances and field work (on-the-job demonstrations) of skill development, safety practices, equipment, and material handling.

Methods of Evaluation/Basis of Grade:

Homework assignments; field work

Class performances; field work

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None 0 - 0%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or noncomputational problem solving skills.

Skill Demonstrations: All skill-based and physical

demonstrations used for assessment purposes including skill performance exams.

Exams: All forms of formal testing, other than skill

performance exams.

Quizzes and examinations to include multiple choice, true/false, matching items, and completion

Skill Demonstrations 50 - 65%

Problem solving

10 - 25%

Writing

Exams 10 - 20% **Other:** Includes any assessment tools that do not logically fit into the above categories.

Attendance and participation	Other Category 5 - 10%
------------------------------	---------------------------

Representative Textbooks and Materials:
Related Science. International Pipe Trades Joint Training Committee. 2010 (classic)
Hydraulic Heating & Cooling. International Pipe Trades Joint Training Committee. 2009 (classic)