

CATALOG INFORMATION

Full Title: Programming Concepts and Methodologies 1
Last Reviewed: 2/8/2021

Catalog Description:
Introduces the discipline of computer science using C++ and utilizing programming and
practical hands-on problem solving.

Prerequisites/Corequisites:

Recommended Preparation:
Eligibility for ENGL 1A or equivalent or appropriate placement based on AB705 mandates; and
Course Completion of CS 10A or equivalent experience in any programming language

Limits on Enrollment:

Schedule of Classes Information:
Description: Introduces the discipline of computer science using C++ and utilizing programming
and practical hands-on problem solving. (Grade or P/NP)
Prerequisites/Corequisites:
Recommended: Eligibility for ENGL 1A or equivalent or appropriate placement based on
AB705 mandates; and Course Completion of CS 10A or equivalent experience in any
programming language

5/2/2024 4:45 PM Approved (Changed Course)

CS 10B Course Outline as of Fall 2021

Dept and Nbr: CS 10B Title: PROGRAMMING CONCEPTS 1

Units Course Hours per Week Nbr of Weeks Course Hours Total

Maximum 4.00 Lecture Scheduled 3.00 17.5 Lecture Scheduled 52.50
Minimum 4.00 Lab Scheduled 3.00 6 Lab Scheduled 52.50

Contact DHR 0 Contact DHR 0
Contact Total 6.00 Contact Total 105.00

Non-contact DHR 0 Non-contact DHR 0

Total Out of Class Hours: 105.00 Total Student Learning Hours: 210.00

Title 5 Category: AA Degree Applicable
Grading: Grade or P/NP
Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:
Formerly:

Limits on Enrollment:
Transfer Credit: CSU;UC.
Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

Certificate/Major Applicable:
Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:
At the conclusion of this course, the student should be able to:
1. Design, implement, test, and debug a program that uses each of the following fundamental
programming constructs: basic computation, simple I/O, standard conditional and iterative
structures, and the definition of functions.
2. Use pseudocode or a programming language to implement, test, and debug algorithms for
solving simple problems.
3. Summarize the evolution of programming languages illustrating how this history has led to the
paradigms available today.
4. Demonstrate different forms of binding, visibility, scoping, and lifetime management

Objectives:
At the conclusion of this course, the student should be able to:
1. Choose appropriate conditional and iteration constructs for a given programming task.
2. Apply the techniques of structured (functional) decomposition to break a program into smaller
 pieces.
3. Identify the necessary properties of good algorithms.
4. Create algorithms for solving simple problems.
5. Identify at least one distinguishing characteristic for each of the programming paradigms
 covered in this unit.
6. Explain the value of declaration models, especially with respect to programming-in-the-large.
7. Identify and describe the properties of a variable such as its associated address, value, scope,
 persistence, and size.
8. Describe strategies that are useful in debugging.

Topics and Scope:

AS Degree: Area Effective: Inactive:
CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Fall 2018 Inactive:

UC Transfer: Transferable Effective: Fall 2018 Inactive:

CID:
CID Descriptor:COMP 122 Programming Concepts and Methodology I
SRJC Equivalent Course(s): CS10A OR CS10B

SR_ClassCheck.aspx?CourseKey=CS10B

I. Fundamental Programming Constructs
 A. Basic syntax and semantics of a higher-level language
 B. Variables, types, expressions, and assignment
 C. Simple I/O
 D. Conditional and iterative control structures
 E. Functions and parameter passing
 F. Structured decomposition
II. Algorithms and Problem-Solving
 A. Problem-solving strategies
 B. The role of algorithms in the problem-solving process
 C. Implementation strategies for algorithms
 D. Debugging strategies
 E. The concept and properties of algorithms
III. Overview of Programming Languages
 A. History of programming languages
 B. Brief survey of programming paradigms
 C. Procedural languages
 D. Object-oriented languages
IV. Declarations and Types
 A. The conception of types as a set of values together with a set of operations Declaration
 models (binding, visibility, scope, and lifetime)
 B. Overview of type-checking

All topics are covered in both the lecture and lab parts of the course.

Assignment:

Lecture-Related Assignments:
1. Read approximately 30 pages per week
2. Complete 2-8 examinations including final exam

Lab-Related Assignments:
1. Complete 10-15 programming assignments, with documentation, using the C++ programming
 language

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills
and/or require students to select, organize and explain ideas
in writing.

Written program documentation
Writing

10 - 20%

Problem Solving: Assessment tools, other than exams, that
demonstrate competence in computational or non-
computational problem solving skills.

Programming assignments
Problem solving

20 - 60%

Representative Textbooks and Materials:
Starting Out with C++ From Control Structures through Objects. 9th ed. Gaddis, Tony. Pearson.
2017

Skill Demonstrations: All skill-based and physical
demonstrations used for assessment purposes including skill
performance exams.

None
Skill Demonstrations

0 - 0%

Exams: All forms of formal testing, other than skill
performance exams.

Exams, Final Exam: (Multiple choice, true/false, matching
items, completion, programming problems)

Exams
20 - 60%

Other: Includes any assessment tools that do not logically
fit into the above categories.

None
Other Category

0 - 0%

