WWTR 124 Course Outline as of Fall 2019

CATALOG INFORMATION

Dept and Nbr: WWTR 124 Title: PUMPS AND MOTORS Full Title: Pumps and Motors Last Reviewed: 8/27/2018

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.75	17.5	Lecture Scheduled	48.13
Minimum	3.00	Lab Scheduled	0.75	4	Lab Scheduled	13.13
		Contact DHR	0		Contact DHR	0
		Contact Total	3.50		Contact Total	61.25
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 96.25

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade or P/NP
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	ENVT 124

Catalog Description:

Basic theory of hydraulics and pumping systems, including operation, troubleshooting, maintenance and repair of pumps and pumping systems.

Prerequisites/Corequisites:

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Basic theory of hydraulics and pumping systems, including operation, troubleshooting, maintenance and repair of pumps and pumping systems. (Grade or P/NP) Prerequisites/Corequisites: Recommended: Limits on Enrollment: Transfer Credit: Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area	Effective:	Inactive:
CSU Transfer	: Effective:	Inactive:	
UC Transfer:	Effective:	Inactive:	

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Describe water system hydraulics and the types and uses of pumps.
- 2. Perform basic installation, maintenance, troubleshooting, and repair of hydraulic pumps.
- 3. Describe the electrical control of pumping systems.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. List main types, features, and uses of hydraulic pumps.
- 2. Select, install, and maintain pipe, pipe fittings, and valves in water and wastewater systems.
- 3. Explain the theories related to how various pumps operate.
- 4. Perform related hydraulic calculations and measurements.
- 5. Install and operate hydraulic pumps.
- 6. Describe pump control using Supervisory Control And Data Acquisition (SCADA).
- 7. Maintain, troubleshoot, and repair hydraulic pumps.
- 8. Define electrical terms, principles, equations, and safety procedures.
- 9. Perform electrical calculations and measurements involving power, voltage, amperage, and electrical resistance.
- 10. Describe the types of motors and starters, their uses, and their principles of operation.
- 11. Maintain, troubleshoot, and repair electrical motors and starters.
- 12. Describe pump station operations, maintenance, and safety procedures.

Topics and Scope:

- I. Introduction to Pumps and Hydraulics
 - A. History
 - B. Vocabulary
 - C. Classification and operational differences
 - 1. Dynamic pumps
 - 2. Positive displacement pumps
 - D. Applications water and wastewater systems
- II. Piping and Valves

- A. Suction and discharge piping selection and installation
- B. Control valves: types, installation, maintenance, and repair
- C. Sealing and priming of pumping systems
- III. Basic Electronics
 - A. Electrical terms, formulas, and circuits
 - B. Determining power, voltage, amperage and electrical resistance
 - C. Wiring and wiring tools
- IV. Meters and Test Equipment
 - A. Metering equipment
 - B. Amp testing
 - C. Megohmmeter testing
 - D. Testing pressure gauges
- V. Motors and Starters
 - A. Types and uses
 - B. Principles of operation
 - C. Energy optimization and efficiency
 - D. Maintenance and troubleshooting
- E. Disassembly and repair
- VI. Hydraulics Computations
 - A. Hydraulics theory basics
 - B. Horsepower and efficiency
 - C. Total Dynamic Head (TDH)
 - D. Net Positive Suction Head (NPSH)
 - E. Pump curves
 - F. Affinity laws
 - 1. Impeller trim and speed change effects
 - 2. Capacity, head, and horsepower requirements
- VII. Centrifugal Pumps
 - A. Types, including coupling and drive types
 - B. Principles of operation
 - C. Installation and operation
 - D. Maintenance and troubleshooting
 - E. Disassembly and repair
- VIII. Hydrostatic Pumps
 - A. Types and principles of operation
 - B. Installation and operation
 - C. Maintenance and troubleshooting
 - D. Disassembly and repair
- IX. Pump Station Maintenance and Safety
 - A. Preventive and planned maintenance
 - B. Appropriate intervals and triggers
 - C. General safety procedures
- Lab Topics and Scope
- I. Electrical meters and measurements
- II. Pressure and flow meters and measurements
- III. Electrical wiring basics
- IV. Pipe and valve assembly, sealing, and priming
- V. Horsepower and efficiency
- VI. Motor and starter maintenance, troubleshooting, disassembly, and repair
- VII. Centrifugal pump maintenance, troubleshooting, disassembly, and repair
- VIII. Hydralic pump maintenance, troubleshooting, disassembly, and repair

IX. Pump station overview and field trip

Assignment:

Lecture-related Assignments:

- 1. Reading assignments (20 pages per week)
- 2. Problem solving homework assignments (10-15)
- 3. Quizzes and/or exams (2-15)
- 4. Final exam
- 5. Field trip report (3-5 pages)

Lab-related Assignments:

1. Lab write-ups (10-15)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Field trip report

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems and lab write-ups

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Quizzes, exams, and final

Other: Includes any assessment tools that do not logically fit into the above categories.

Attendance and participation

nat	
	Problem solving 30 - 55%
kill	
	Skill Demonstrations 0 - 0%

Exams 30 - 55%

Writing

5 - 10%

Other Category 0 - 10%

Representative Textbooks and Materials:

Water Pumps and Pumping Systems, Water/Wastewater Treatment Applications. Rishel, James. McGraw-Hill. 2002 (classic) Pumps and Pumping. 8th ed. Arasmith, Skeet. ACR Publication. 2000 (classic)

Instructor prepared materials