CONS 182 Course Outline as of Fall 2017

CATALOG INFORMATION

Dept and Nbr: CONS 182 Title: HOME PERFORM ENERGY STAR

Full Title: Home Performance with Energy Star, Level 1

Last Reviewed: 3/14/2011

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade or P/NP

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Introduction to building science and home performance principles for home energy conservation improvements. This overview class is Level 1 of Home Performance with Energy Star training and prepares the student for additional training leading to certification.

Prerequisites/Corequisites:

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Introduction to building science and home performance principles for home energy conservation improvements. This overview class is Level 1 of Home Performance with Energy Star training and prepares the student for additional training leading to certification. (Grade or P/NP)

Prerequisites/Corequisites:

Recommended:

Limits on Enrollment:

Transfer Credit:

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Effective: Inactive:

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Not Certificate/Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Upon completion of the course, students will be able to:

- 1. Identify building systems and components and evaluate their relationship to energy consumption.
- 2. Identify and develop energy conservation opportunities in new and existing construction.
- 3. Select from a variety of energy conservation methods and apply appropriate measures to acheive and verify cost effective, high level energy conservation.
- 4. Describe how to mitigate the effects of poor indoor air quality, moisture intrusion, and inadequate combustion safety.

Topics and Scope:

- I. Introduction
 - A. Overview of course
 - B. Working with clients to provide a service
 - C. Importance of customer relations
 - D. Importance of a good work ethic
- II. Energy consumption
 - A. Comparing energy sources
 - B. Understanding home energy use
 - C. Analyzing an energy bill
- III. Basic building science
 - A. Principles of energy
 - 1. Forms of energy
 - 2. Energy transformation and heat flow
 - 3. Principles of sensible and latent heat
 - 4. Comfort and energy
 - B. Factors affecting building performance
 - 1. Laws of thermodynamics

- 2. How heat moves
- 3. Air pressure and flow
- 4. Moisture levels
- 5. Thermal boundary

IV. Site conditions affecting energy use

- A. Physical considerations
 - 1. Topography
 - 2. Water
 - 3. Soil
- B. Climate considerations
 - 1. Climate zones and impact on energy strategies
 - 2. Impact of the sun: building orientation and solar heat gain
 - 3. Impact of the wind
 - 4. Impact of precipitation
- C. Biological considerations: trees and other foliage
- V. The building envelope components: foundation to roof
 - A. The foundation
 - B. The building frame
 - C. Windows and doors
 - D. Insulation
 - E. Vapor barriers
 - F. Finish materials
- VI. Evaluating air leakage in the envelope
 - A. Impacts of air leakage
 - 1. How air enters a building
 - 2. How air moves
 - 3. Energy loss associated with air leakage
 - B. Construction defects and air leakage in the envelope
 - C. Principles of air sealing
 - 1. Pressures behind leakage
 - 2. Pressure and air flow
 - D. Materials and methods for air sealing
 - E. Test methods
- VII. Evaluating moisture leakage in the envelope
 - A. Moisture
 - 1. How moisture enters building
 - 2. How moisture moves
 - 3. Energy loss associated with moisture leakage
 - B. Construction defects and moisture leakage in the envelope
 - C. Materials and methods for moisture sealing
 - 1. Moisture barriers
 - 2. Moisture removal systems
 - D. Test methods
 - 1. Moisture meters
 - 2. Humidity levels
- VIII. Heating systems and energy use
 - A. Principles of heating systems
 - 1. Air flow and humidity
 - 2. Energy loss
 - 3. Combustion safety
 - B. Types of heating systems
 - 1. Forced air and ducts

- 2. Steam and hot water heating
- 3. Heat pumps
- 4. New energy-efficient furnaces and boilers
- C. Comparisons of heating systems
 - 1. Energy use
 - 2. Comfort and air quality
- IX. Cooling systems and energy use
 - A. Principles of cooling systems
 - 1. Air flow and humidity
 - 2. Refrigerant charge
 - 3. Energy loss
 - B. Types of cooling systems
 - 1. Forced air and ducts
 - 2. Heat pumps
 - 3. New energy-efficient cooling systems
 - C. Comparisons of cooling systems
 - 1. Energy use
 - 2. Comfort and air quality
- X. Water heating, lighting, appliances and energy use
 - A. Water heating systems
 - 1. Energy use and efficiency of storage water heaters
 - 2. Energy use and efficiency of alternatives to storage water heaters
 - B. Lighting systems and fixtures
 - 1. Types
 - 2. Energy use
 - 3. Efficacy
 - C. Household appliances
 - 1. Types
 - 2. Energy use
 - 3. Efficiency
- XI. Home evaluation/energy audit
 - A. Objectives of a home evaluation/energy audit and overview of process
 - B. Site inspection
 - C. Dealing with clients
 - D. Occupant interview
 - E. Testing procedures
 - 1. Building envelope and air leakage
 - 2. Building envelope and moisture leakage
 - 3. Indoor air quality
 - 4. Heating and cooling equipment
 - 5. Water heating, lighting and appliances
 - F. Recording and interpreting the test results
- XII. Reporting the results and developing strategies for improvements
 - A. Formatting data to be included
 - B. Providing plan of home to identify location of problems
 - C. Identifying the problems
 - D. Presenting options for cost effective energy retrofits
 - E. Suggesting phasing of improvements
 - F. Writing the final report
- XIII. Next steps
 - A. Career opportunities
 - B. Additional training opportunities

C. Certification process

Assignment:

- 1. Reading (10-30 pages per week)
- 2. Weekly problem solving assignments (10-20)
- 3. Case study (analysis of home performance)
- 4. Midterm exam
- 5. Final exam

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Writing 0 - 0%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Problem solving questions; case study (analysis of home performance).

Problem solving 40 - 60%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Midterm and final exam (objective questions, multiple choice, true-false, matching, completion, short answer, essay)

Exams 40 - 60%

Other: Includes any assessment tools that do not logically fit into the above categories.

Attendance and participation.

Other Category 0 - 10%

Representative Textbooks and Materials:

- 1. Residential Energy Cost Savings and Comfort For Existing Buildings. John Krigger and Chris Dorsi Fifth Edition, Saturn Resources Management, Inc., 2009
- 2. HVAC Workbook. S. Don Swenson Third Edition, Building Performance Institute, California Home Performance Contractors Association, 2003 (classic).
- 3. Reference sources: Building Science. Com

4. Instructor prepared materials						