ELEC 61 Course Outline as of Summer 2008

CATALOG INFORMATION

Dept and Nbr: ELEC 61 Title: FUND ELEC CIRCUITS Full Title: Fundamentals of Electronic Circuits Last Reviewed: 11/5/1997

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	5.00	Lecture Scheduled	5.00	17.5	Lecture Scheduled	87.50
Minimum	5.00	Lab Scheduled	0	17.5	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 175.00

Total Student Learning Hours: 262.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Analysis of linear electronic circuits. Concepts of rectification, amplification, and oscillating circuits utilizing both vacuum and solid-state devices.

Prerequisites/Corequisites:

Completion of ELEC 60, ELEC 60L and ELEC 90A or MATH 27 (formerly MATH 57) or higher.

Recommended Preparation: Course Completion of MATH 11

Limits on Enrollment:

Schedule of Classes Information:

Description: Concepts of rectification, amplification & oscillating cir both vacuum & solid-state devices. (Grade Only) Prerequisites/Corequisites: Completion of ELEC 60, ELEC 60L and ELEC 90A or MATH 27 (formerly MATH 57) or higher. Recommended: Course Completion of MATH 11 Limits on Enrollment:

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area	Effective:	Inactive:
CSU Transfer	: Effective:	Inactive:	
UC Transfer:	Effective:	Inactive:	

CID:

Certificate/Major Applicable:

Certificate Applicable Course

COURSE CONTENT

Outcomes and Objectives:

The student will be able to:

- 1. state the characteristics of and identify a PN junction.
- 2. classify the common power supply diode circuits.
- 3. compare the characteristics of power supply filter types.
- 4. compute power supply performance in terms of percent of ripple and regulation.
- 5. calculate component values necessary to construct a common emitter, common base and common collector amplifier.
- 6. calculate amplifier performance in terms of gain, phase, and bandwidth and compare to actual measured values.
- 7. recognize the effects of loading upon an individual stage.
- 8. design and evaluate the performance of a JFET amplifier.
- 9. describe the behavior of both series and parallel resonance.
- 10. synthesize the basic power supply with voltage regulation and short circuit protection.
- 11. recall the operating characteristics of an SCR and a TRIAC.
- 12. identify and explain the basic L-C and R-C oscillator circuit.

Topics and Scope:

- 1. Semi-conductor physics "PN" junction forward and reverse-bias.
- 2. Diode circuits, power supply circuits: Full wave, half wave, and bridge.
- 3. Filter circuits, capacitor and choke input.
- 4. Bi-polar supplies, voltage doubler, percent of ripple, and regulation.
- 5. BJT structure, characteristics curves; alpha and beta.

- 6. Biasing, DC load line, amplification, thermal stability.
- 7. Common emitter, common base, common collector design, and characteristics.
- 8. Series and parallel resonance, Q and bandwidth.
- 9. Classes of amplification, power amplifiers.
- 10. JFET structure and characteristics.
- 11. MOSFET structure and characteristics.
- 12. Regulated power supplies.
- 13. Short circuit protection.
- 14. S.C.R. crowbar.
- 15. Oscillator basics.
- 16. Vacuum tube triode characteristics.

Assignment:

- 1. Textbook readings.
- 2. Textbook homework problems.
- 3. Handout homework problems.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems, Quizzes, Exams

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, True/false, Matching items, Completion

Other: Includes any assessment tools that do not logically fit into the above categories.

Writing 0 - 0%

Problem solving 40 - 40%

Skill Demonstrations 0 - 0%

> Exams 60 - 60%

Other Category 0 - 0%

None

Representative Textbooks and Materials: SEMICONDUCTOR CIRCUIT APPROXIMATIONS by Malvino.