MATH 58 Course Outline as of Fall 2008

CATALOG INFORMATION

Dept and Nbr: MATH 58 Title: TRIGONOMETRY Full Title: Trigonometry Last Reviewed: 2/10/2020

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Trigonometric functions and their graphs, trigonometric identities, trigonometric equations, inverse trigonometric functions, complex numbers, polar coordinates, parametric equations, vectors, and applications.

Prerequisites/Corequisites: Completion of MATH 155 or higher (V1)

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Trigonometric functions and their graphs, trigonometric identities, trigonometric equations, inverse trigonometric functions, complex numbers, polar coordinates, parametric equations, vectors, and applications. (Grade Only) Prerequisites/Corequisites: Completion of MATH 155 or higher (V1) Recommended: Limits on Enrollment:

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area B		Communication and Analytical Thinking		Effective: Fall 2006	Inactive:
	В	U	n and Analytical	Fall 1981	Fall 1999
	MC	Math Competer	ncy		
CSU GE:	Transfer Area			Effective:	Inactive:
	B4	Math/Quantitative Reasoning		Fall 2006	
	B4	Math/Quantitat	ive Reasoning	Fall 1981	Fall 1996
IGETC:	Transfer Area			Effective:	Inactive:
CSU Transfer	: Transferable	Effective:	Fall 2006	Inactive:	
UC Transfer:		Effective:		Inactive:	

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Upon completion of the course, students will be able to:

- 1. Define the trigonometric functions, using both right triangle and unit circle.
- 2. Use radian measure to find arc length, sector area, and linear and angular velocity.
- 3. Verify trigonometric identities.
- 4. Solve, both graphically and analytically, equations involving trigonometric functions.
- 5. Graph trigonometric functions and transformations of these functions.
- 6. Define and graph the inverse trigonometric functions.
- 7. Apply trigonometric functions and identities to solve applications and modeling problems.
- 8. Solve right and oblique triangles using the trigonometric functions and the Laws of Sine and Cosine.
- 9. Represent complex numbers in, and perform operations using, trigonometric form.
- 10. Use vectors to model applications in mathematics and science.

Topics and Scope:

- I. Trigonometric Functions
 - A. Radian and degree measures of angles
 - 1. Arc length
 - 2. Area of a sector

- 3. Linear and angular velocity
- B. Right triangle and unit circle definitions
- C. Characteristics of trigonometric functions
- II. Identities and Conditional Equations
 - A. Fundamental identities
 - B. Sum and difference identities
 - C. Related identities and their derivations
 - D. Conditional trigonometric equations and applications
- III. Graphical Representation of Trigonometric Functions
 - A. Amplitude and reflections
 - B. Period
 - C. Phase (horizontal) shifts
 - D. Vertical shifts
- IV. Inverse Functions
 - A. Definitions
 - B. Properties of inverse functions
 - C. Inverse trigonometric functions and their graphs
- V. Solutions of Triangles
 - A. Right triangles
 - B. Oblique triangles
 - C. Laws of Sines and Cosines
 - **D**. Applications
- VI. Complex Numbers, Polar Coordinates, and Parametric Equations
 - A. Definitions
 - B. Operations
 - C. Graphical representation of complex numbers
 - D. DeMoivre's Theorem
 - E. Polar coordinates
 - F. Parametric equations
- VII. Two Dimensional Vectors
 - A. Geometric and analytic definitions
 - B. Algebra of vectors
 - C. Trigonometric form of vectors
 - D. Dot product
 - E. Applications

Assignment:

- 1. Daily reading outside of class (approximately 20-50 pages per week).
- 2. Problem set assignments from required text(s)or supplementary materials chosen by the instructor (approximately 1-6 per week).
- 3. Quizzes (approximately 0-4 per week).
- 4. Exams (approximately 3-8 per term).
- 5. Projects (for example, computer explorations or modeling activities, approximately 0-10 per term).

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice and free response exams; quizzes

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects

Representative Textbooks and Materials:

Trigonometry (9th). Lial, Hornsby & Schneider. Addison-Wesley: 2008.

Writing 0 - 0% Problem solving 5 - 20% Skill Demonstrations 0 - 0%

> Other Category 0 - 10%

70 - 95%