CATALOG INFORMATION

Dept and Nbr: MATH 25 Title: COLLEGE ALGEBRA
Full Title: College Algebra
Last Reviewed: 2/8/2021

Units		Course Hours per Week	Nbr of Weeks		Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
					Non-contact DHR	0

Total Out of Class Hours: 105.00
Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable
Grading: Grade Only
Repeatability: $\quad 00$ - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:
Formerly:

Catalog Description:

Topics from college algebra, including analytic geometry, functions and their graphs, complex numbers, sequences and series.

Prerequisites/Corequisites:

Completion of MATH 155 or higher (V1)

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Topics from college algebra, including analytic geometry, functions and their graphs, complex numbers, sequences and series. (Grade Only)
Prerequisites/Corequisites: Completion of MATH 155 or higher (V1)
Recommended:
Limits on Enrollment:
Transfer Credit: CSU;UC.
Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

COURSE CONTENT

Outcomes and Objectives:

Upon completion of the course, students will be able to:

1. Perform advanced operations with functions (using symbolic, graphical, and numerical representations) and apply knowledge to modeling problems.
2. Define and graph inverse functions.
3. Define and apply characteristics of functions (including intercepts, turning points, intervals of positive/negative, increasing/decreasing value, transformations, symmetry) in graphing polynomial, rational, absolute value, radical, exponential, and logarithmic functions.
4. Solve selected algebraic equations over the complex numbers.
5. Solve algebraic equations graphically and symbolically, including absolute value, polynomial, radical, rational, logarithmic, and exponential.
6. Graph circles, functions, and parametric equations.
7. Graph asymptotes and recognize a hole in the graph.
8. Perform operations with complex numbers.

Topics and Scope:

I. Equations and Inequalities
A. Graphical and algebraic solutions to radical and quadratic-form equations, and to absolute value equations and inequalities
B. Solutions to systems of nonlinear equations
II. Complex Numbers
A. Definition
B. Operations with complex numbers
III. Analysis of Functions and Their Graphs
A. Definition
B. Notation
C. Domain
D. Range
E. Operations, including difference quotients and composition of functions
F. Catalog of functions
G. Symmetry
H. Even and odd functions
I. Shifts
J. Scaling
K. Reflections of graphs, along with modeling
IV. Polynomial and Rational Functions
A. Linear, quadratic, polynomial functions of higher degree and their graphs
B. Graphs of rational functions
C. Asymptotes and holes
D. Introduction to limit concepts and notation
E. Solutions of polynomial and rational equations and inequalities, using real numbers and complex numbers as appropriate
V. Inverse, Exponential and Logarithmic Functions
A. Definitions
B. Properties
C. Graphs
D. Equations
E. Applications
VI. Sequences and Series
A. Finite and infinite geometric sequences and series
B. Summation of powers of integers
VII. Topics from Analytic Geometry
A. Midpoint and distance formulas
B. Circles
C. Parametric equations

Assignment:

1. Daily reading outside of class (approximately 20-50 pages per week).
2. Problem set assignments from required text(s) or supplementary materials chosen by the instructor (approximately 1-6 per week).
3. Quizzes (approximately 0-4 per week).
4. Exams (approximately 3-8 per term).
5. Projects (for example, computer explorations or modeling activities, approximately $0-10$ per term).

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or noncomputational problem solving skills.

Homework problems
Problem solving 5-20\%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice and free response exams; quizzes
Other: Includes any assessment tools that do not logically fit into the above categories.

Projects

Representative Textbooks and Materials:

College Algebra Enhanced with Graphing Utilities (5th ed.). Sullivan, Michael and Sullivan III, Michael. Prentice Hall: 2009.

