MATH 38 Course Outline as of Fall 2004

CATALOG INFORMATION

Dept and Nbr: MATH 38 Title: PASCAL PROGRAM-SCI Full Title: Pascal Programming for Science Last Reviewed: 6/28/2004

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	4.00	Lab Scheduled	0	17.5	Lab Scheduled	0
		Contact DHR	3.00		Contact DHR	52.50
		Contact Total	6.00		Contact Total	105.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 210.00

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

The solution of mathematical, scientific and engineering problems using the Pascal language. Emphasis on structured programming, including documentation, procedures, structured data types and pointer variables.

Prerequisites/Corequisites:

MATH 27 (formerly MATH 57) or MATH 58 or four years of high school college preparatory mathematics with qualifying placement score, and a previous computer programming course with grades of "C" or better.

Recommended Preparation:

Prerequisite courses taken within the last year. If a student's record shows a duplication of equivalent courses the most recent course must satisfy the prerequisite.

Limits on Enrollment:

Schedule of Classes Information:

Description: Programming in the Pascal language for math, science & engineering. (Grade Only) Prerequisites/Corequisites: MATH 27 (formerly MATH 57) or MATH 58 or four years of high school college preparatory mathematics with qualifying placement score, and a previous

computer programming course with grades of "C" or better. Recommended: Prerequisite courses taken within the last year. If a student's record shows a duplication of equivalent courses the most recent course must satisfy the prerequisite. Limits on Enrollment: Transfer Credit: Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area B	Communication and Analytical Thinking	Effective: Fall 1981	Inactive: Fall 2004
CSU GE:	Transfer Area B4		Effective: Fall 1981	Inactive: Fall 2004
IGETC:	Transfer Area		Effective:	Inactive:
CSU Transfer	:	Effective:	Inactive:	
UC Transfer:		Effective:	Inactive:	

CID:

Certificate/Major Applicable:

Not Certificate/Major Applicable

COURSE CONTENT

Outcomes and Objectives:

To be successful, students should be able to:

- 1. Use structured programming (top down) techniques.
- 2. Use block structures, parameters and simple recursion to construct procedures and functions.
- 3. Use Pascal data types: including simple data types, defined scalar data types and structured data types (arrays, records, files & sets).
- 4. Use pointer variables: linked list, stack, queue and binary tree.
- 5. Write computer programs in Pascal to solve problems in mathematics and science. Program topics may be drawn from: algebraic and transcendental equation solutions, analytic geometry, statics, empirical probability simulation, and computations of numerical sequences and series.

Topics and Scope:

- 1. Preliminary Concepts. Simple data type, assignment statement, I/O statements, control statements.
- 2. Procedures and Functions. Block structure, parameters, simple recursion.
- 3. Building Quality Programs. Documentation, structured programming, top down programming.
- 4. Additional Pascal Data Types.

User defined scalar data types, structured data types including arrays, records, files, sets.

- 5. Pointer Variables. Linked list, stack, queue, binary tree.
- 6. Problem Solving Using Methods Such As. Simulation with random numbers, sorting, mathematical and scientific concepts.

Assignment:

- 1. The student will have daily outside reading, programming assignments, problem set assignments from required text(s), or instructor chosen supplementary materials.
- 2. Instructional methodology may include, but not limited to: lecture, demonstrations, oral recitation, discussion, supervised practice, independent study, outside project or other assignments.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments and skill demonstrations are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Lab reports, Exams

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Performance exams

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice

Other: Includes any assessment tools that do not logically fit into the above categories.

Writing Assignments

Representative Textbooks and Materials:

Writing 0 - 0%	

D 11 1 1	
Problem solving	
50 - 75%	
50 1570	

Skill Demonstrations
10 - 25%

Exams	
5 - 25%	

Other Category 0 - 15% Text(s) required of each student will be selected by the department, a committee of the department, or the responsible instructor from the books currently available. Choices in the past have included: Programming in Pascal by Dale; Heath Publishing, 1990.